-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodel_summary.py
44 lines (37 loc) · 1.6 KB
/
model_summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import re
import argparse
from torchsummary import summary
from utils import UnetResNet, FPN
import torch
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', type=str, required=True)
parser.add_argument('--backbone', type=str, required=True)
parser.add_argument('--num_classes', type=int, required=False, default=8)
parser.add_argument('--unet_res_blocks', type=int, required=False, default=0)
parser.add_argument('--input_size', type=str, required=False, default="3,512,1024")
args = parser.parse_args()
globals().update(args.__dict__)
model_type = model_type.lower()
input_size = tuple(int(d) for d in re.split("\D", input_size))
if model_type == "unet":
model = UnetResNet(encoder_name=backbone,
num_classes=num_classes,
input_channels=3,
num_filters=32,
Dropout=0.3,
res_blocks_dec=bool(unet_res_blocks))
elif model_type == "fpn":
model = FPN(encoder_name=backbone,
decoder_pyramid_channels=256,
decoder_segmentation_channels=128,
classes=num_classes,
dropout=0.3,
activation='sigmoid',
final_upsampling=4,
decoder_merge_policy='add')
else:
raise ValueError('Model type is not correct: `{}`.'.format(model_type))
device = torch.device("cpu")
model = model.to(device)
summary(model, input_size=input_size, device="cpu")