
A Framework for Measuring Hardware Gather-Scatter Support
Patrick Lavin

plavin3@gatech.edu
Georgia Institute of Technology

Jeffrey Young (Advisor)
jyoung9@gatech.edu

Georgia Institute of Technology

Richard Vuduc (Advisor)
richie@cc.gatech.edu

Georgia Institute of Technology

ABSTRACT
This poster describes a new benchmark tool, Spatter, for assessing
memory system architectures in the context of indexed accesses.
This type of memory operation is often used to easily express sparse
and irregular data patterns. Scatters and gathers have widespread
utility in many modern HPC applications, including traditional
scientific simulations, data mining and analysis computations, and
graph processing.

Spatter specifically measures gather / scatter variations for mul-
tiple platforms, with several tunable backends, and provides com-
parison metrics for different sparse access patterns. It also allows
for benchmarking with trace-driven “proxy patterns,” which we
demonstrate for multiple DoEmini-apps to show how pattern-based
benchmarking can be used to improve system insights.

CCS CONCEPTS
• General and reference→ Measurement.

KEYWORDS
Memory Architecture, Gather/Scatter, Microbenchmarks

ACM Reference Format:
Patrick Lavin, Jeffrey Young (Advisor), and Richard Vuduc (Advisor). 2019.
A Framework for Measuring Hardware Gather-Scatter Support. In SC19,
November 18–21, 2019, Denver, CO. ACM, New York, NY, USA, 2 pages.

1 MOTIVATION
New CPU architectures have begun to incorporate advanced vector
functionality like AVX-512 and the Scalable Vector Extension (SVE)
for improved SIMD application performance. In addition, many of
these new vector specifications include explicit support for indexed
accesses like gather and scatter (G/S). These types of memory oper-
ations involve a load or store through a level of indirection, such
as reg ← base[idx[k]], and they appear commonly in scientific
and data analysis applications.

While manymemory-focusedmicrobenchmarks [1] are available
today, a gap exists in the evaluation of indexed accesses including
gather and scatter. We are motivated to design a benchmarking tool
that assesses system performance on gather / scatter workloads for
three different types of users: (1) vendors and hardware architects
might wonder how new hardware features like AVX-512 actually
impact the memory system and whether new intrinsic operations
actually help to reduce the costs of data movement, (2) application
developers may consider how the data structures they choose im-
pact the G/S instructions their code compiles to, and (3) compiler
writers might require better data on real-world memory access

SC19, November 18–21,2019, Denver, CO

patterns to decide whether to implement a specific vectorization
optimization for sparse accesses.

In considering these needs, we have formulated one such tool,
called Spatter. It evaluates indexed access patterns based on gather
and scatter operations, which represent a variety of applications
across different language and architecture platforms. More impor-
tantly, we believe Spatter can help to answer a variety of system,
application, and tool evaluation questions, some of which include:
(1) What application gather / scatter patterns exist in the real world,
and how do they impact memory system performance? (2) How
does prefetching affect performance of indexed accesses on modern
CPU platforms? (3) How does the performance of G/S change when
dealing with sparse data on CPUs and GPUs?

2 SPATTER DESIGN
We show in this work that the Spatter tool suite can address these
questions with the following key features. At a basic level, Spatter
provides tunable gather and scatter implementations. These
include CUDA and OpenMP backends with knobs for adjusting
thread block size and ILP on GPUs and work-per-thread on CPUs.

Finally, Spatter includes support for running built-in, param-
eterized memory access patterns, or custom patterns. We show,
for instance, how one can collect G/S traces from Department of
Energy (DoE) mini-apps to gain insights or make rough predictions
about performance for hot kernels that depend on indexed accesses.

3 EXPERIMENTAL RESULTS
Results from Spatter show that newer GPU architectures perform
best for both gather and scatter operations in part due to mem-
ory coalescing and faster memories. AMD Naples performs best of
all the CPU-based platforms (Broadwell, Skylake, TX2) for strided
accesses. A study of prefetching with Spatter further shows how
gather / scatter benefits from modern prefetching across Broad-
well and Skylake CPUs. Spatter’s scalar backend is also used to
demonstrate how compiler vectorization can improve gather / scat-
ter with large improvements for both Skylake and Knight’s Landing.
Experiments for three DoE mini-apps show G/S performance im-
provements enabled by caching on CPU systems and by fast HBM
memory on GPUs. Surprisingly, these parameterized access pat-
tern studies also show that STREAM bandwidth does not correlate
well with specific mini-apps (Nekbone) that are cache-dependent,
whereas Spatter is able to capture some of this cache behavior.

4 CONCLUSION
We have used Spatter’s simple memory pattern model, consisting
of a pattern and a delta, to explore features of CPU and GPU mem-
ory architecture and to model memory access patterns found in
mini-apps. In the future, we will continue this effort by extending



SC19, November 18–21,2019, Denver, CO Patrick Lavin, Jeffrey Young (Advisor), and Richard Vuduc (Advisor)

Spatter to work on more platforms, and by generalizing our model
to descriptive of a larger class of patterns.

ACKNOWLEDGMENT
This work is partially supported by NSF Award #1710371, and por-
tions were completed while the first author was employed by Cray,

Inc. as an intern. This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC05-00OR22725.

REFERENCES
[1] J. McCalpin, “Notes on “non-temporal” (aka “streaming”) stores.” http://sites.utexas.

edu/jdm4372/tag/cache/, 2018.

http://sites.utexas.edu/jdm4372/tag/cache/
http://sites.utexas.edu/jdm4372/tag/cache/

	Abstract
	1 Motivation
	2 Spatter Design
	3 Experimental Results
	4 Conclusion
	References

