Spatter: A Framework for
Measuring Haraware Gather-
Scatter Support

Patrick Lavin, Jeffrey Young, Jason Riedy, Rich Vuduc,
Aaron Vose, Dan Ernst

Georgia College off
Tech | Cemmputing

Purpose

* Modern processors implement

Indexed Vector Load and Store Gather (indexed read):
instructions, better known as for i in 0..vector_len:
Gather/Scatter (G/S) instructions. regli] = mem[idx[i]]
e AVX512 SVE Scatter (indexed write):
' for i in 0..vector_len:
mem[idx[1]] = regl[il]

e Spatter aims to help application
developers, compiler writers,
and architects assess how well

compilers and hardware support
G/S.

5 Georgianstiiute
ot Technologry

G/S Examples

* We can group SVE G/S instructions in traces based on the
index bufter and the delta from the previous access

* By examining the index buffers, we can classity the types of
patterns we see

Pattern Example Apps

Nekbone, Lulesh,

Uniform Stride [0,4,8,12,16,20,24,28]
Pennant
Mostly Stride-1 [0,1,2,36,37,38,72,73,74] AMG
Broadcast [0,0,0,0,4,4,4,4] Pennant

Georgianstiiute
3 ofTechmoloayy

Spatter Kernels

S¥YrcC

l

///

® The basis of Spatter are gather
and scatter kernels

J/

Gather kernel:
for 1 in 0..N:
reg = gather(src + deltaxi, idx)

e [alcle]e

A///%////

Scatter kernel:
for 1 in 0..N:
scatter(dst + deltaxi, idx, reg)

T I93I

® The delta and the pattern in idx
specify the memory access pattern.

P
dst: ///// ///

D|F.

E

4 Georgianstiiute
o Technologyy

Features

Backends - Serial, OpenMP, CUDA (and SVE soon)

Built-in common patterns (Unitorm Stride, Mostly Stride-1,

Laplacian stencil)
Performance tuning

e OpenMP Work per thread
e CUDA block size

e Pattern length

Advanced scripting with JSON

5

NVIDIA.
CUDA

OpenMIP

Georgianstiiute
o Technologyy

Using Spatter

1. Basic Usage - Specity a pattern
on the command line

2. Advanced Usage - specify a
JSON file containing a collection
of patterns

Matrix [ranspose

"Will some operation be slow L=$((2%%24))

if | don’t transpose the matrix
firat?" Transpose First:

./spatter -pUNIFORM:4:1 -d4 -1$L
= 29258.5 MB/s

E.g. Performing a portion of

an FFT across rows, when the No Transbose :
matrix is stored in column ./spatter -pUNIFORM:4:$L -d1 -1$L
order = 26898.5 MB/s

*Xeon E5-2650 v4, Skylake, 12 threads

ENNNEEENEEEEEEE
D]jD]ID:[[D:[[

Georgianstiiute
ot Technologry

Stencil Patterns (New tor SCI)

e Spatter supports several
built-in, parametrized
stencils

e E.g. LAPLACIAN:2:1:100
represents this stencil on a
problem ot size 100x100

° Spatter will turn this into ./spatter -pLAPLACIAN:2:1:100 -1$((2%%25))
= 67862.4 MB/s

the following pattern, with
a delta of one

[o, 99, 100, 101, 200]

[-100, -1, 0, 1, 100]
5 Georgianstiiute
o Technologyy

Advanced Usage: JSON Files

* Spatter is able to optimize memory
allocation and provide summarized
output if all of your tests are
specitfied in a single JSON file

ustride_simple.json

[{‘pattern’:’UNIFORM:8:1",
‘delta’:8, ‘count’:10000},
{‘pattern’ :"UNIFORM:8:2",
‘delta’:16, ‘count’:10000},
{‘pattern’ :"UNIFORM:8:4",
‘delta’:32, ‘count’:10000},

Running Spatter version 0.4

Compiler: Intel ver. 19.0.0.20190206
Compiler Location: /opt_local/intel/bin/icc
Backend: OPENMP

Aggregate Results? YES

Run Configurations

[{'name':'UNIFORM:8:1', ‘delta’:Ss,..},
{"'name':'UNIFORM:8:2', ‘delta’:16,..},
{"name' :'UNIFORM:8:4"', ‘delta’:32, ..},

5

config time(s) bw(MB/s)
0 0.205 /78033.8
1 0.1622 49325

2 0.1705 23465.7

Georgianstiiute
ot Technologry

Vector vs Scalar Loads

—e— BDW
. 80 -
In previous Intel hardware — KNL
generations, there was no benefit to —e— Naples
using G/S instructions. 60- SKA
TX2

More modern hardware, however, 40 -

shows speedup when using these
instructions for uniform stride loads.

Percent Improvement

We provide a serial backend for this
purpose

Stride (Doubles)

./spatter -pFILE=ustride_simple.json -bOPENMP
./spatter -pFILE=ustride_simple.json -bSERIAL

Georgianstiiute
10 ofTechmoloayy

Cache Implementation Exploration:

Prefetching

50 ... PrefetCh 1
s Off
on =
* Why does Broadwell bandwidth improve 5% 5
. : > g
at large strides and why does it out- 2 5
perform Skylake? E 2 g
° T
S :
105 - skx U4 2
| m— AW 1/8
— an . ‘ . . ' . 1/16
20 21 22 23 24 25 26 D
— X2 Stride (Doubles)
= 70 1
o] Prefetch
= e Off
% 60 on c
C 4
© o
9104'_ ‘§
3 5
— 12
=
£
14 =2
. 1/8
20 21 22 23 24 25 26 27 =41/16
Stride (Doubles) 2 2 22 2 2 P 2
11 Georgianstiiute

o Technologyy

GPU: G/S Available Bandwidth
Improvement

e GPU gather/scatter performance has improved in recent generations.

e Full main memory bandwidth now available when doing gather/scatter
operations (assuming a stream-like access pattern)

K40c Titan Xp P100 GV100

Reported BW
288 547.7 732 870

Spatter Gather

145 427 578 877
Spatter
Scatter 196 480 600 896

./spatter -pUINFORM:256:1 -d256 -1$((2%%18))

19 Georgianstiiute
o Techmoalochy

GPU: Unitorm Stride Access
Improvements

* The ability of GPU’s to maintain a high percentage of peak as access stride

Log(Bandwidth)

has increase, has improved over recent generations

e The P100 and Titan are noticeably “flatter” at intermediate strides than
the K40 for gather

e The GV100 does not flatten out until stride 8, a divergence from previous
generations

10°

- GV100 - GV100
—e K40C - K40cC
—— P100 —— P100
—¢— Titan

-—¢= Titan

--- 25% of peak _ --- 12.5% of peak

20 71 52 3 >4 25 26 57 20 21 22 23 24 25 26 Gegr - i
_ : gialhstitute
Stride (Doubles) 13 Stride (Doubles) o Technology

Application Specitic Patterns

AMG NEKBONE LULESH Pennant STREAM

e We have collected patterns from BDW 123 121 20 6 43
4 DoE mini-apps and placed SKL 308 308 12 35 96
them into JSON files CSL 234 215 9 28 94

Naples 140 323 3 11 97

* Spatter bandwidths do not ™2 270 oa7| 232 o8l 241
correlate well with STREAM for KNL 201 190 19 4 249
these patterns (R value close to 1) Rvalie 026 0.03 05 -0.04

e GPU patterns correlate

K40c 108 99 88 14 193
reasonably well |
TitanXp 496 320 175 21 443
P100 703 673 165 19 541
GV100 1368 1395 368 20 870
./spatter -pFILE=amg.json Rvalie 075 073 072 0.52

Performance in GB/s _
14 Georgianstiiute
o Technologyy

What's Next?

Integrate our ARM SVE backend, add an AVX512 backend

e Accurate L1/L2 Measurements
o A64FX's Combined Gather

Open source G/S trace generation from applications

More kernels to express more memory access patterns, such

as GUPS and Pointer Chase

Create a standard set of configurations

15

Georgianstiiute
ot Technologry

More Info

Spatter.io

 Documentation, links to code and data repos, and a link to our ArXiv pre-

print

ArXiv Pre-print

e Spatter: A Benchmark Suite for Evaluating Sparse Access Patterns

* https://arxiv.org/abs/1811.03743

ACM Student Research Competition Poster 27
e 5:15-7:00 today
Code

* https://github.com/hpcgarage/spatter

16

Georgianstiiute
ot Technologry

http://spatter.io
https://arxiv.org/abs/1811.03743
https://github.com/hpcgarage/spatter

Acknowledgements

This material is based upon work supported by the National Science Foundation under Award #1710371.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-000R22725

This research was supported in part by the Laboratory Directed Research and Development program at
Sandia National Laboratories under contract DE-NA-0003525. Disclaimer: The views, opinions, and/or
findings contained in this document are those solely of the author(s) and should not be interpreted as
representing the official views or policies of any of its funding sources.

17 @Georgiaﬂﬁm@ﬁﬁﬁwﬁ@
ot Technolocyy

=

Spatter: A Framework for Measuring
Hardware Gather-Scatter Support

[0,4,8,12,16,20,24,28]

[0,1,2,36,37,38,72,73,74]

SIrc

2= el ol -

(%

L] ,, 7 Y L™
[0,0,0,0,4,4,4,4] dst: | A1 Y %2 7
106
105 - skx —@— GV100
— HAW —%— K40cC
NP —4— P100
@2 —e— Titan
= g __________ -- 25% of peak _
T i
E S
= =
C C 105_
© ©
2 104 &)
o
% ~ o
— / 1

20 21 22 23 4 25 26 Q7
Stride (Doubles)

18

20 21 22 23 24 25 6 37
Stride (Doubles)

Backup Slides

Examples - Vectorization

e Some forms of vectorization will naturally lead to Gather/
Scatter operations

Algo: SUM COLUMNS
for (j in range(N)): Column-Major

for (i in range(4)):
out[j] += datali,j]

l 0

Algo: Vectorized SUM COLUMNS
for (j = @; j < N; j+=8):
temp = 0; // vector of length 8
for (i in range(4)):
temp += gather(j+i, [0,4,8,12,16,20,24,28])
out[j:j+8] = temp

20 Georgianstiiute
o Technologyy

Examples - CSR SpMV

y = A X

* Gathers can also represent ¢ o ®
o o0 o
indirection ol _leoe ol.le

® ®

o o o

e (Gather elements of x, then do a
dot product with data in A.

for (i in range(nrows)):
indices « row[i] : row[i+1]
gather(tmp, x, col[indices])
y[i] = dot_prod(val[indices], tmp)

Georgianstiiute

21 ot Technaloayy

Examples - CSC SpMV

y = A X
* Scale some a column of A by : : o * :
the value in x, then ol =-|oo ®l-|®
| °
scatter-accumulate into . ° o o :

for (1 1n range(ncols)):
1indices « col[1] : col[1+1]
tmp < vector_scale(val[1indices], x[1])
scatter_accum(y, row[indices], tmp)

50 Georgianstiiute
o Technologyy

Examples - SpGEMM

e Scatter-accumulate

columns of A C = A . B
corresponding to non- o o |o o |o
frias o oo o0
zero entries in a o — o ol.l o o
column of B into a ® °
s o |o@ o |o

dense SPA buffer.
Gather SPA into C. .
for (j in range(ncols) : SPA: |

SPA = 0 //dense accumulation buffer 2

for non-zero B(k,7J) :
scatter_accum(SPA, A(:,k)*B(Ck,73))

gather(C.val, SPA)

gather(C.row, which(SPA))

C.col[J+1] = C.col[3] + nnz(SPA)

Algorithm from Bulu¢ and Gilbert: Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments

https://doi.org/10.1137/110848244 03 Georgia hstiiute
o Technologyy

Example - SuperlLU

100 -

e SuperlLU spends a large portion
its runtime on just scattering data

60 -

40 -

Normalized execution time

20 -

Y ' ' ,L&L @? L
Coalesced 7 &
Gather Scatter
DGEMM
. SCATTER . DGEMM . REST
Chart credits: Piyush Sao &Georgiaﬂm@ﬁﬁﬁ@ﬁ@
24 ofTechnology

Platforms

TABLE III: Experimental Parameters and Systems (OMP Denotes OpenMP, and OCL Denotes OpenCL).

System description Abbreviation System Type STREAM (MB/s) Threads, Backends
Knight’s Landing (cache mode) KNL Intel Xeon Phi 249,313 272 threads, OMP
Broadwell BDW 32-core Intel CPU (E5-2695 v4) 43,885 16 threads, OMP
Skylake SKX 32-core Intel CPU (Platinum 8160) 97,163 16 threads, OMP
Cascade Lake CSX 24-core Intel CPU (Platinum 8260L) 66,661 12 threads, OMP
ThunderX2 X2 28-core ARM CPU 120,000 112 threads, OMP
Kepler K40c K40c NVIDIA GPU 193,855 CUDA

Titan XP Titan XP NVIDIA GPU 443,533 CUDA

Pascal P100 P100 NVIDIA GPU 541,835 CUDA

Broadwell (ICC) BDW2 12-core CPU (E5-2650) 85,750 24 threads, OMP
Skylake (ICC) SKX2 6-core CPU (Gold 6128) 66,661 12 threads, OMP

25

Application Patterns

TABLE I: High-Level Characterization of Application G/S Patterns.

Application (Extracted Patterns) Selected Kernels Gathers Scatters G/S MB (%)
AMG (partially stride-1)

hypre_CSRMatrixMatvecOutOfPlace 1,696,875 0 217 (17.8)
LULESH (fixed-stride)

IntegrateStressForElems 828,168 382,656 155 (22.4)
InitStressTermsForElems 1,121,844 1,153,827 291 (67.6)
Nekbone (fixed-stride)

ax_e 2,948,940 0 377 (33.3)
PENNANT (fixed-stride, partially stride-0, complex strides)

Hydro: :doCycle 728,814 0 93 (13.9)
Mesh::calcSurfVecs 324,064 0 41 (39.5)
QCS: :setForce 891,066 0 114 (45.5)
QCS: :setQCnForce 1,214,318 323,800 197 (64.5)

TABLE II: Details for Selected Applications and Kernels Used for G/S Pattern Extraction.

Application — Version

Problem Size / Changes

Kernel Notes

AMG - github.com/
LLNL/AMG

09fe8a’

commit

LULESH - 2.0.3

Nekbone — 2.3.5

PENNANT - 0.9

Arguments —-problem 1 -n 36 36 36 -P
4 4 4,also mg_max_iter in amg.c setto 5
to limit iterations.

Arguments -1 2 -s 40, also modifications to
vectorize the outer loop of the first loop-nest in
IntegrateStressForElems.

Set 1dim = 3, ifbrick = true, ielO
= 32, ielN = 32, nx0 = 16, nxN = 16,
stride = 1, internal np and nelt distribu-
tion. Also, niter in driver.f set to 30 to
limit CG iterations.

Config file sedovflat.pnt with
meshparams 1920 2160 1.0 1.125

and cstop 5.

Entirety of each of the functions listed in Table 1.

The first loop-nest in
IntegrateStressForElems. Arrays
[xyz]_local[8] as well as B[3] [8] give
stride-8 and stride-24. Also, the entirety of the
InitStressTermsForElems function.
First loop in ax (essentially a wrapped call to
ax_e) contains the observed stride-6.

Entirety of each of the functions listed in Table I.

20

U@

O | — %7 | IIESVINSY)\

