-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_test.go
754 lines (666 loc) · 18.8 KB
/
example_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// a set of examples for the rel package
package rel_test
import (
"fmt"
"github.com/jonlawlor/rel"
"sort"
)
type supplierTup struct {
SNO int
SName string
Status int
City string
}
type suppliers []supplierTup
func (tups suppliers) Len() int { return len(tups) }
func (tups suppliers) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
func (tups suppliers) Less(i, j int) bool { return tups[i].SNO < tups[j].SNO }
func ExampleRelation_union() {
// the type of the tuples in the relation
// defined elsewhere...
// type supplierTup struct {
// SNO int
// SName string
// Status int
// City string
// }
r1 := rel.New([]supplierTup{
{1, "Smith", 20, "London"},
{2, "Jones", 10, "Paris"},
{3, "Blake", 30, "Paris"},
}, [][]string{
[]string{"SNO"}, // the candidat key
})
r2 := rel.New([]supplierTup{
{4, "Clark", 20, "London"},
{5, "Adams", 30, "Athens"},
{6, "Coppola Ristorante", 1, "New Providence"},
}, [][]string{
[]string{"SNO"}, // the candidat key
})
r3 := r1.Union(r2)
// order the output and stick it back into a slice
// this is really just to get the output into a consistent order. If you
// don't care about the order, you don't have to do this. Currently
// ordering is not part of the rel package (it isn't a part of relational
// algebra!)
res := suppliers{}
t := make(chan supplierTup)
r3.TupleChan(t)
for v := range t {
res = append(res, v)
}
// defined elsewhere...
// type suppliers []supplierTup
//
// func (tups suppliers) Len() int { return len(tups) }
// func (tups suppliers) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
// func (tups suppliers) Less(i, j int) bool { return tups[i].SNO < tups[j].SNO }
sort.Sort(res)
r4 := rel.New(res, [][]string{
[]string{"SNO"}, // the candidate key
})
fmt.Printf("%v\n", r3)
fmt.Println(rel.PrettyPrint(r4))
// Output:
// Relation(SNO, SName, Status, City) ∪ Relation(SNO, SName, Status, City)
// +------+---------------------+---------+-----------------+
// | SNO | SName | Status | City |
// +------+---------------------+---------+-----------------+
// | 1 | Smith | 20 | London |
// | 2 | Jones | 10 | Paris |
// | 3 | Blake | 30 | Paris |
// | 4 | Clark | 20 | London |
// | 5 | Adams | 30 | Athens |
// | 6 | Coppola Ristorante | 1 | New Providence |
// +------+---------------------+---------+-----------------+
}
func ExampleRelation_diff() {
// the type of the tuples in the relation
// defined elsewhere
// type supplierTup struct {
// SNO int
// SName string
// Status int
// City string
// }
r1 := rel.New([]supplierTup{
{1, "Smith", 20, "London"},
{2, "Jones", 10, "Paris"},
{3, "Blake", 30, "Paris"},
{4, "Clark", 20, "London"},
{5, "Adams", 30, "Athens"},
{6, "Coppola Ristorante", 1, "New Providence"},
}, [][]string{
[]string{"SNO"}, // the candidat key
})
r2 := rel.New([]supplierTup{
{1, "Smith", 20, "London"},
{2, "Jones", 10, "Paris"},
{3, "Blake", 30, "Paris"},
{4, "Clark", 20, "London"},
{5, "Adams", 30, "Athens"},
}, [][]string{
[]string{"SNO"}, // the candidat key
})
r3 := r1.Diff(r2)
fmt.Println(r3)
fmt.Println(rel.PrettyPrint(r3))
// in this case there is a single tuple so no ordering is needed
// Output:
// Relation(SNO, SName, Status, City) ∪ Relation(SNO, SName, Status, City)
// +------+---------------------+---------+-----------------+
// | SNO | SName | Status | City |
// +------+---------------------+---------+-----------------+
// | 6 | Coppola Ristorante | 1 | New Providence |
// +------+---------------------+---------+-----------------+
}
type PNOSNO struct {
PNO int
SNO int
}
type PNOSNOs []PNOSNO
func (tups PNOSNOs) Len() int { return len(tups) }
func (tups PNOSNOs) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
func (tups PNOSNOs) Less(i, j int) bool {
return tups[i].PNO < tups[j].PNO || (tups[i].PNO == tups[j].PNO && tups[i].SNO < tups[j].SNO)
}
func ExampleRelation_projectDistinct() {
// the type of the tuples in the input relation
type orderTup struct {
PNO int
SNO int
Qty int
}
r1 := rel.New([]orderTup{
{1, 1, 300},
{1, 2, 200},
{1, 3, 400},
{1, 4, 200},
{1, 5, 100},
{1, 6, 100},
{2, 1, 300},
{2, 2, 400},
{3, 2, 200},
{4, 2, 200},
{4, 4, 300},
{4, 5, 400},
}, [][]string{
[]string{"PNO", "SNO"},
})
// the type of the tuples in the output relation
// it is distinct because it contains attributes that are a subset of
// one of the candidate keys.
// defined elsewhere:
// type PNOSNO struct {
// PNO int
// SNO int
// }
r2 := r1.Project(PNOSNO{})
// order the output and stick it back into a slice
// this is really just to get the output into a consistent order. If you
// don't care about the order, you don't have to do this. Currently
// ordering is not part of the rel package (it isn't a part of relational
// algebra!)
res := PNOSNOs{}
t := make(chan PNOSNO)
r2.TupleChan(t)
for v := range t {
res = append(res, v)
}
// defined elsewhere...
// type PNOSNOs []PNOSNO
//
// func (tups PNOSNOs) Len() int { return len(tups) }
// func (tups PNOSNOs) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
// func (tups PNOSNOs) Less(i, j int) bool { return tups[i].PNO < tups[j].PNO || (tups[i].PNO == tups[j].PNO && tups[i].SNO < tups[j].SNO) }
sort.Sort(res)
r3 := rel.New(res, [][]string{
[]string{"SNO", "PNO"}, // the candidate key
})
fmt.Printf("%v\n", r2)
fmt.Println(rel.PrettyPrint(r3))
// Output:
// π{PNO, SNO}(Relation(PNO, SNO, Qty))
// +------+------+
// | PNO | SNO |
// +------+------+
// | 1 | 1 |
// | 1 | 2 |
// | 1 | 3 |
// | 1 | 4 |
// | 1 | 5 |
// | 1 | 6 |
// | 2 | 1 |
// | 2 | 2 |
// | 3 | 2 |
// | 4 | 2 |
// | 4 | 4 |
// | 4 | 5 |
// +------+------+
}
type PNOQty struct {
PNO int
Qty int
}
type PNOQtys []PNOQty
func (tups PNOQtys) Len() int { return len(tups) }
func (tups PNOQtys) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
func (tups PNOQtys) Less(i, j int) bool {
if tups[i].PNO < tups[j].PNO {
return true
} else if tups[i].PNO == tups[j].PNO && tups[i].Qty < tups[j].Qty {
return true
}
return false
}
func ExampleRelation_projectNonDistinct() {
// the type of the tuples in the input relation
type orderTup struct {
PNO int
SNO int
Qty int
}
r1 := rel.New([]orderTup{
{1, 1, 300},
{1, 2, 200},
{1, 3, 400},
{1, 4, 200},
{1, 5, 100},
{1, 6, 100},
{2, 1, 300},
{2, 2, 400},
{3, 2, 200},
{4, 2, 200},
{4, 4, 300},
{4, 5, 400},
}, [][]string{
[]string{"PNO", "SNO"},
})
// the type of the tuples in the output relation
// it is not distinct because it does not contain attributes that are a
// subset of one of the candidate keys.
// defined elsewhere...
// type PNOQty struct {
// PNO int
// Qty int
//}
r2 := r1.Project(PNOQty{})
// order the output and stick it back into a slice
// this is really just to get the output into a consistent order. If you
// don't care about the order, you don't have to do this. Currently
// ordering is not part of the rel package (it isn't a part of relational
// algebra!)
res := PNOQtys{}
t := make(chan PNOQty)
r2.TupleChan(t)
for v := range t {
res = append(res, v)
}
sort.Sort(res)
r3 := rel.New(res, [][]string{
[]string{"PNO", "Qty"}, // the candidate key
})
fmt.Printf("%v\n", r2)
fmt.Println(rel.PrettyPrint(r3))
// defined elsewhere...
// type PNOQtys []PNOQty
//
// func (tups PNOQtys) Len() int { return len(tups) }
// func (tups PNOQtys) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
// func (tups PNOQtys) Less(i, j int) bool {
// if tups[i].PNO < tups[j].PNO {
// return true
// } else if tups[i].PNO == tups[j].PNO && tups[i].Qty < tups[j].Qty {
// return true
// }
// return false
// }
// Output:
// π{PNO, Qty}(Relation(PNO, SNO, Qty))
// +------+------+
// | PNO | Qty |
// +------+------+
// | 1 | 100 |
// | 1 | 200 |
// | 1 | 300 |
// | 1 | 400 |
// | 2 | 300 |
// | 2 | 400 |
// | 3 | 200 |
// | 4 | 200 |
// | 4 | 300 |
// | 4 | 400 |
// +------+------+
}
func ExampleRelation_rename() {
type orderTup struct {
PNO int
SNO int
Qty int
}
r1 := rel.New([]orderTup{
{1, 1, 300},
{1, 2, 200},
{1, 3, 400},
{1, 4, 200},
{1, 5, 100},
{1, 6, 100},
{2, 1, 300},
{2, 2, 400},
{3, 2, 200},
{4, 2, 200},
{4, 4, 300},
{4, 5, 400},
}, [][]string{
[]string{"PNO", "SNO"},
})
// the type of the tuples in the output relation
// in this case the position of the fields is significant. They correspond
// to the fields in orderTup.
type titleCaseTup struct {
Pno int
Sno int
Qty int
}
r2 := r1.Rename(titleCaseTup{})
fmt.Println(r2)
fmt.Println(rel.PrettyPrint(r2))
// currenty rename does not result in a non deterministic ordering
// Output:
// ρ{Pno, Sno, Qty}/{PNO, SNO, Qty}(Relation(PNO, SNO, Qty))
// +------+------+------+
// | Pno | Sno | Qty |
// +------+------+------+
// | 1 | 1 | 300 |
// | 1 | 2 | 200 |
// | 1 | 3 | 400 |
// | 1 | 4 | 200 |
// | 1 | 5 | 100 |
// | 1 | 6 | 100 |
// | 2 | 1 | 300 |
// | 2 | 2 | 400 |
// | 3 | 2 | 200 |
// | 4 | 2 | 200 |
// | 4 | 4 | 300 |
// | 4 | 5 | 400 |
// +------+------+------+
}
func ExampleRelation_restrict() {
// the type of the tuples in the relation
type supplierTup struct {
SNO int
SName string
Rating int
City string
}
r1 := rel.New([]supplierTup{
{1, "Smith", 3, "London"},
{2, "Jones", 1, "Paris"},
{3, "Blake", 3, "Paris"},
{4, "Clark", 2, "London"},
{5, "Adams", 3, "Athens"},
{6, "Coppola Ristorante", 5, "New Providence"},
}, [][]string{
[]string{"SNO"}, // the candidat key
})
// chose records with rating greater than 4
r2 := r1.Restrict(rel.Attribute("Rating").GT(4))
fmt.Println(r2)
fmt.Println(rel.PrettyPrint(r2))
// Output:
// σ{Rating > 4}(Relation(SNO, SName, Rating, City))
// +------+---------------------+---------+-----------------+
// | SNO | SName | Rating | City |
// +------+---------------------+---------+-----------------+
// | 6 | Coppola Ristorante | 5 | New Providence |
// +------+---------------------+---------+-----------------+
}
type joinTup struct {
PNO int
SNO int
Qty int
SName string
Status int
City string
}
type joinTups []joinTup
func (tups joinTups) Len() int { return len(tups) }
func (tups joinTups) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
func (tups joinTups) Less(i, j int) bool {
return tups[i].PNO < tups[j].PNO || (tups[i].PNO == tups[j].PNO && tups[i].SNO < tups[j].SNO)
}
func ExampleRelation_join() {
// suppliers relation, with candidate keys {SNO}
// the {SName} key is also possible to use
// type supplierTup struct {
// SNO int
// SName string
// Status int
// City string
// }
suppliers := rel.New([]supplierTup{
{1, "Smith", 20, "London"},
{2, "Jones", 10, "Paris"},
{3, "Blake", 30, "Paris"},
{4, "Clark", 20, "London"},
{5, "Adams", 30, "Athens"},
}, [][]string{
[]string{"SNO"},
})
type orderTup struct {
PNO int
SNO int
Qty int
}
orders := rel.New([]orderTup{
{1, 1, 300},
{1, 2, 200},
{1, 3, 400},
{1, 4, 200},
{1, 5, 100},
{1, 6, 100},
{2, 1, 300},
{2, 2, 400},
{3, 2, 200},
{4, 2, 200},
{4, 4, 300},
{4, 5, 400},
}, [][]string{
[]string{"PNO", "SNO"},
})
// the type of the resulting tuples
// defined elsewhere...
// type joinTup struct {
// PNO int
// SNO int
// Qty int
// SName string
// Status int
// City string
// }
partsSuppliers := orders.Join(suppliers, joinTup{})
// order the output and stick it back into a slice
// this is really just to get the output into a consistent order. If you
// don't care about the order, you don't have to do this. Currently
// ordering is not part of the rel package (it isn't a part of relational
// algebra!)
res := joinTups{}
t := make(chan joinTup)
partsSuppliers.TupleChan(t)
for v := range t {
res = append(res, v)
}
sort.Sort(res)
partsSuppliersOrdered := rel.New(res, [][]string{
[]string{"PNO", "SNO"}, // the candidate key
})
fmt.Printf("%v\n", partsSuppliers)
fmt.Println(rel.PrettyPrint(partsSuppliersOrdered))
// defined elsewhere...
// type joinTups []joinTup
//
// func (tups joinTups) Len() int { return len(tups) }
// func (tups joinTups) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
// func (tups joinTups) Less(i, j int) bool {
// return tups[i].PNO < tups[j].PNO || (tups[i].PNO == tups[j].PNO && tups[i].SNO < tups[j].SNO)
// }
// Output:
// Relation(PNO, SNO, Qty) ⋈ Relation(SNO, SName, Status, City)
// +------+------+------+--------+---------+---------+
// | PNO | SNO | Qty | SName | Status | City |
// +------+------+------+--------+---------+---------+
// | 1 | 1 | 300 | Smith | 20 | London |
// | 1 | 2 | 200 | Jones | 10 | Paris |
// | 1 | 3 | 400 | Blake | 30 | Paris |
// | 1 | 4 | 200 | Clark | 20 | London |
// | 1 | 5 | 100 | Adams | 30 | Athens |
// | 2 | 1 | 300 | Smith | 20 | London |
// | 2 | 2 | 400 | Jones | 10 | Paris |
// | 3 | 2 | 200 | Jones | 10 | Paris |
// | 4 | 2 | 200 | Jones | 10 | Paris |
// | 4 | 4 | 300 | Clark | 20 | London |
// | 4 | 5 | 400 | Adams | 30 | Athens |
// +------+------+------+--------+---------+---------+
}
type PNO struct {
PNO int
Qty int
}
type PNOs []PNO
func (tups PNOs) Len() int { return len(tups) }
func (tups PNOs) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
func (tups PNOs) Less(i, j int) bool { return tups[i].PNO < tups[j].PNO }
func ExampleRelation_groupBy() {
// the type of the tuples in the input relation
type orderTup struct {
PNO int
SNO int
Qty int
}
r1 := rel.New([]orderTup{
{1, 1, 300},
{1, 2, 200},
{1, 3, 400},
{1, 4, 200},
{1, 5, 100},
{1, 6, 100},
{2, 1, 300},
{2, 2, 400},
{3, 2, 200},
{4, 2, 200},
{4, 4, 300},
{4, 5, 400},
}, [][]string{
[]string{"PNO", "SNO"},
})
// this is the type of the resulting tuples. Because PNO is not a part of
// the RETURN of the groupFcn, it is used to determine the unique groups of
// the resulting relation.
// defined elsewhere...
// type PNO struct {
// PNO int
// Qty int
// }
// this is (in this case) both the type of the tuples that get accumulated,
// and also the resulting type of the accumulation.
type valTup struct {
Qty int
}
// a function which sums the quantities of orders
groupFcn := func(val <-chan valTup) valTup {
res := valTup{}
for vi := range val {
res.Qty += vi.Qty
}
return res
}
r2 := r1.GroupBy(PNO{}, groupFcn)
// order the output and stick it back into a slice
// this is really just to get the output into a consistent order. If you
// don't care about the order, you don't have to do this. Currently
// ordering is not part of the rel package (it isn't a part of relational
// algebra!)
res := PNOs{}
t := make(chan PNO)
r2.TupleChan(t)
for v := range t {
res = append(res, v)
}
sort.Sort(res)
r3 := rel.New(res, [][]string{
[]string{"PNO"}, // the candidate key
})
fmt.Printf("%v\n", r2)
fmt.Println(rel.PrettyPrint(r3))
// defined elsewhere...
// type PNOs []PNO
//
// func (tups PNOs) Len() int { return len(tups) }
// func (tups PNOs) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
// func (tups PNOs) Less(i, j int) bool { return tups[i].PNO < tups[j].PNO }
// Output:
// Relation(PNO, SNO, Qty).GroupBy({PNO, Qty}->{Qty})
// +------+-------+
// | PNO | Qty |
// +------+-------+
// | 1 | 1300 |
// | 2 | 700 |
// | 3 | 200 |
// | 4 | 900 |
// +------+-------+
}
type qtyDouble struct {
PNO int
SNO int
Qty1 int
Qty2 int
}
type qtyDoubles []qtyDouble
func (tups qtyDoubles) Len() int { return len(tups) }
func (tups qtyDoubles) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
func (tups qtyDoubles) Less(i, j int) bool {
return tups[i].PNO < tups[j].PNO || (tups[i].PNO == tups[j].PNO && tups[i].SNO < tups[j].SNO)
}
func ExampleRelation_map() {
type orderTup struct {
PNO int
SNO int
Qty int
}
r1 := rel.New([]orderTup{
{1, 1, 300},
{1, 2, 200},
{1, 3, 400},
{1, 4, 200},
{1, 5, 100},
{1, 6, 100},
{2, 1, 300},
{2, 2, 400},
{3, 2, 200},
{4, 2, 200},
{4, 4, 300},
{4, 5, 400},
}, [][]string{
[]string{"PNO", "SNO"},
})
// defined elsewhere...
// type qtyDouble struct {
// PNO int
// SNO int
// Qty1 int
// Qty2 int
//}
mapFcn := func(tup1 orderTup) qtyDouble {
return qtyDouble{tup1.PNO, tup1.SNO, tup1.Qty, tup1.Qty * 2}
}
// an arbitrary function could modify any of the columns, which means
// we need to explain what the new Keys (if any) will be afterwards
mapKeys := [][]string{
[]string{"PNO", "SNO"},
}
r2 := r1.Map(mapFcn, mapKeys)
// order the output and stick it back into a slice
// this is really just to get the output into a consistent order. If you
// don't care about the order, you don't have to do this. Currently
// ordering is not part of the rel package (it isn't a part of relational
// algebra!)
res := qtyDoubles{}
t := make(chan qtyDouble)
r2.TupleChan(t)
for v := range t {
res = append(res, v)
}
sort.Sort(res)
r3 := rel.New(res, [][]string{
[]string{"PNO", "SNO"}, // the candidate key
})
fmt.Printf("%v\n", r2)
fmt.Println(rel.PrettyPrint(r3))
// defined elsewhere...
// type qtyDoubles []qtyDouble
//
// func (tups qtyDoubles) Len() int { return len(tups) }
// func (tups qtyDoubles) Swap(i, j int) { tups[i], tups[j] = tups[j], tups[i] }
// func (tups qtyDoubles) Less(i, j int) bool {
// return tups[i].PNO < tups[j].PNO || (tups[i].PNO == tups[j].PNO && tups[i].SNO < tups[j].SNO)
//}
// Output:
// Relation(PNO, SNO, Qty).Map({PNO, SNO, Qty}->{PNO, SNO, Qty1, Qty2})
// +------+------+-------+-------+
// | PNO | SNO | Qty1 | Qty2 |
// +------+------+-------+-------+
// | 1 | 1 | 300 | 600 |
// | 1 | 2 | 200 | 400 |
// | 1 | 3 | 400 | 800 |
// | 1 | 4 | 200 | 400 |
// | 1 | 5 | 100 | 200 |
// | 1 | 6 | 100 | 200 |
// | 2 | 1 | 300 | 600 |
// | 2 | 2 | 400 | 800 |
// | 3 | 2 | 200 | 400 |
// | 4 | 2 | 200 | 400 |
// | 4 | 4 | 300 | 600 |
// | 4 | 5 | 400 | 800 |
// +------+------+-------+-------+
}