@@ -53,16 +53,6 @@ parameters it can be given either with parentheses (e.g. :py:func:`DIFF()<DIFF()
53
53
:param timespan: Time span in seconds
54
54
55
55
56
- .. py :function :: BW(order, lo- freq, hi- freq)
57
-
58
- Butterworth Bandpass filter (BW) realized as a causal recursive IIR (infinite impulse response)
59
- filter. An arbitrary bandpass filter can be created for given order and corner frequencies.
60
-
61
- :param order: The filter order
62
- :param lo-freq: The lower corner frequency
63
- :param hi-freq: The upper corner frequency
64
-
65
-
66
56
.. py :function :: BW_LP(order, hi- freq)
67
57
68
58
Butterworth lowpass filter realized as a causal recursive IIR (infinite impulse response) filter.
@@ -88,6 +78,21 @@ parameters it can be given either with parentheses (e.g. :py:func:`DIFF()<DIFF()
88
78
:param hi-freq: The upper corner frequency
89
79
90
80
81
+ .. py :function :: BW(order, lo- freq, hi- freq)
82
+
83
+ Alias for :py:func: `high-low-pass filter<BW_HLP()> `.
84
+
85
+
86
+ .. py :function :: BW_BP(order, lo- freq, hi- freq)
87
+
88
+ Butterworth Bandpass filter (BW) realized as a causal recursive IIR (infinite impulse response)
89
+ filter. An arbitrary bandpass filter can be created for given order and corner frequencies.
90
+
91
+ :param order: The filter order
92
+ :param lo-freq: The lower corner frequency
93
+ :param hi-freq: The upper corner frequency
94
+
95
+
91
96
.. py :function :: DIFF
92
97
93
98
Differentiation filter realized as a recursive IIR (infinite impulse response) differentiation
@@ -97,7 +102,7 @@ parameters it can be given either with parentheses (e.g. :py:func:`DIFF()<DIFF()
97
102
98
103
.. code-block :: py
99
104
100
- s' = (s-v1) * dt
105
+ s' = (s-v1) / dt
101
106
v1 = s;
102
107
103
108
@@ -146,6 +151,19 @@ parameters it can be given either with parentheses (e.g. :py:func:`DIFF()<DIFF()
146
151
147
152
:param timespan: The timespan in seconds
148
153
154
+ .. py :function :: RM(timespan)
155
+
156
+ A running mean filter. For a given time window in seconds the running mean is
157
+ computed from the single amplitude values and set as output. This computation
158
+ is equal to :py:func: `RHMP<RMHP()> ` with the exception that the mean is not
159
+ subtracted from single amplitudes but replaces them.
160
+
161
+ .. code-block :: sh
162
+
163
+ RMHP = self-RM
164
+
165
+ :param timespan: The timespan in seconds
166
+
149
167
.. py :function :: SM5([type = 1 ])
150
168
151
169
A simulation of a 5-second seismometer.
@@ -164,13 +182,16 @@ parameters it can be given either with parentheses (e.g. :py:func:`DIFF()<DIFF()
164
182
:param lta: Long-term time window
165
183
166
184
167
- .. py :function :: WA([type = 1 ])
185
+ .. py :function :: WA([type = 1 [,gain= 2800 [,T0= 0.8 [,h= 0.8 ]]] ])
168
186
169
187
The simulation filter of a Wood-Anderson seismometer. The data format of the waveforms has
170
188
to be given for applying the simulation filter (displacement = 0, velocity = 1, acceleration = 2),
171
189
e.g. WA(1) is the simulation on velocity data.
172
190
173
191
:param type: The data type: 0 (displacement), 1 (velocity) and 2 (acceleration)
192
+ :param gain: The gain of the Wood-Anderson response
193
+ :param T0: The eigen period in seconds
194
+ :param h: The damping constant
174
195
175
196
176
197
.. py :function :: WWSSN_LP([type = 1 ])
0 commit comments