-
Notifications
You must be signed in to change notification settings - Fork 22
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Calculate logLikeLihoodsAbove from samplesBelow #151
Conversation
Benchmark result of Ackley function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: sigopt/evalset/Ackley(dim=2)
SolversID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 5c2f3ce0f48edaa415f646290c199434d68ef4ad4638bf963c13f9c1a5d1bd2brecipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"tpe"
]
}
} specification: {
"name": "Goptuna (TPE)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: fd78b69a4424cea6bdf87dc5e79a74a8c6d0aff8371badd7c1ba11c5389b799arecipe: {
"name": "Optuna-CMAES",
"optuna": {
"loglevel": "error",
"sampler": "CmaEsSampler"
}
} specification: {
"name": "Optuna-CMAES",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.0.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 3071ba4560e75197b0d9e85d0117b988af460904c42b15fb6ccf579d166a4e9arecipe: {
"name": "Optuna-TPE",
"optuna": {
"loglevel": "error",
"sampler": "TPESampler"
}
} specification: {
"name": "Optuna-TPE",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.0.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 17966ef7eccd1a5b5e29f23659e90202e5d228948069153cce3b1f1a03751803recipe: {
"sigopt": {
"name": "ACKLEY",
"dim": 2
}
} specification: {
"name": "sigopt/evalset/Ackley(dim=2)",
"attrs": {
"github": "https://github.com/sigopt/evalset",
"paper": "Dewancker, Ian, et al. \"A strategy for ranking optimization methods using multiple criteria.\" Workshop on Automatic Machine Learning. 2016.",
"version": "kurobako_problems=0.1.8"
},
"params_domain": [
{
"name": "p0",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "p1",
"range": {
"type": "CONTINUOUS",
"low": -10.0,
"high": 30.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Objective Value",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 1976426ff91e4113bb730f4fba67724f4bd21fdaac5cc2166fb9d3e057458b7d
ID: 23c993067b5293e699061e27627e38dcabe267f63caf9773842c9562e4e88b8f
ID: d162d78007748fa9bda3dce403be5c63ed9110740c59be258ea73c0e9ebf708b
ID: 7bcc41ef32dc0cca32d7c01b844ec32abd6fece5f863ab7fc7ec330ba63913d6
ID: fe994927342992c810fcb1f862b16d7d8759ece4e09b05b0c6e742969acbfd14
|
Benchmark result of Rastrigin problem
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rastrigin function (dim=2)
SolversID: 9b2ad76978c9cab636e881f48d36cb398e7812c07cf0cf044ad74b88ba37f902recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"bipop-cmaes"
]
}
} specification: {
"name": "Goptuna (BIPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: bcb361930b088ad765b33edfe444986095c910402687ed162e8f6c11a5351b43recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"cmaes"
]
}
} specification: {
"name": "Goptuna (CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: b40e4010fb9c8506d051f50c41db99f67e5d52d585d04ba4ef88e2d6490b6e15recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/goptuna_solver",
"args": [
"ipop-cmaes"
]
}
} specification: {
"name": "Goptuna (IPOP-CMA-ES)",
"attrs": {
"github": "https://github.com/c-bata/goptuna"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 0091bc29d1a812f56db93aa64502974e93cc18283ec26b6c5c99b085b81529b8recipe: {
"command": {
"path": "/home/runner/work/goptuna/goptuna/bin/rastrigin_problem",
"args": [
"2"
]
}
} specification: {
"name": "Rastrigin function (dim=2)",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.12,
"high": 5.12
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rastrigin",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 8c50e86759933a0dbaf04c154ae3cebfbbf6b397a49a1db1b47ac5dae7365a89
ID: 5d4812251fac7d96cd6bcb683c134e553741f955e2379673731a49deb201616d
ID: af7aa97997c9e5ca6c80b9a7adc66f4979f841b5abba604f9329d12e88fd05fe
ID: aeab515b58a5d09dd615e3f47cad686f03c0f24f168a34ff5c3a667d9b408078
|
Benchmark result of HPOBench-Naval problem
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: HPO-Bench-Naval
SolversID: d7f35c18c3d80bc06651efa2be60cd39448525dac4938682f161f8721dc6eda3recipe: {
"name": "Optuna-RANDOM-ASHA",
"optuna": {
"loglevel": "error",
"sampler": "RandomSampler",
"pruner": "SuccessiveHalvingPruner"
}
} specification: {
"name": "Optuna-RANDOM-ASHA",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.0.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 581be156c7d4cd5286f9f0ae7f9cf4555d39923045b738cb2fcf233491871f0brecipe: {
"name": "Optuna-RANDOM-MEDIAN",
"optuna": {
"loglevel": "error",
"sampler": "RandomSampler",
"pruner": "MedianPruner"
}
} specification: {
"name": "Optuna-RANDOM-MEDIAN",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.0.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 00b6d16a8f2934ddb046c283a5520fed93476954acf55a12814a9bdac7e278f2recipe: {
"name": "Optuna-TPE-ASHA",
"optuna": {
"loglevel": "error",
"sampler": "TPESampler",
"pruner": "SuccessiveHalvingPruner"
}
} specification: {
"name": "Optuna-TPE-ASHA",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.0.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: d70996cc6ff2f96bf615d9623f0325d60a1012c914f2a7383d6f9059106411cbrecipe: {
"name": "Optuna-TPE-MEDIAN",
"optuna": {
"loglevel": "error",
"sampler": "TPESampler",
"pruner": "MedianPruner"
}
} specification: {
"name": "Optuna-TPE-MEDIAN",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=2.0.0, kurobako-py=0.1.8"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: adba9490e43fe66d939f067852b174c90815eb5f7d736b45282d07bd324579d4recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.2.0"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ProblemsID: 5c382dedcdf8170f494a51e00713979e4f1754e3520a61df2ab570c3a115f032recipe: {
"hpobench": {
"dataset": "/home/runner/work/goptuna/goptuna/tmp/fcnet_tabular_benchmarks/fcnet_naval_propulsion_data.hdf5"
}
} specification: {
"name": "HPO-Bench-Naval",
"attrs": {
"github": "https://github.com/automl/nas_benchmarks",
"paper": "Klein, Aaron, and Frank Hutter. \"Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization.\" arXiv preprint arXiv:1905.04970 (2019).",
"version": "kurobako_problems=0.1.8"
},
"params_domain": [
{
"name": "activation_fn_1",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "activation_fn_2",
"range": {
"type": "CATEGORICAL",
"choices": [
"tanh",
"relu"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "batch_size",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 4
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "dropout_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 3
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "init_lr",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "lr_schedule",
"range": {
"type": "CATEGORICAL",
"choices": [
"cosine",
"const"
]
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_1",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "n_units_2",
"range": {
"type": "DISCRETE",
"low": 0,
"high": 6
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Validation MSE",
"range": {
"type": "CONTINUOUS",
"low": 0.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 100
} StudiesID: b98e3a6ce1e7943d7212740ed82ea19bff92a33cf48802b8e02d6fea0e1b3a19
ID: a128278035279dea09fa9c9be248ab43cf039fe1dde948657e1794e03ff89a58
ID: c911c8bc0385b87b358dcd8f3a8243be61d5fd18c82fe74015bf550ad1277f19
ID: 8bca403316c1c0aa23af7c097c7b13436b20ad4a69c7c5deac166fd577cbcda0
ID: 5aae795e88e4a0125a6e1b625f2ce3c64cccc045eb33dd7ab6f7e2c445207879
|
See https://github.com/optuna/optuna/blob/e28e9febbde9ba4ba2c16468401bbb49116353b0/optuna/samplers/_tpe/sampler.py#L326