Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CMA-ES sampler #93

Merged
merged 31 commits into from
Mar 18, 2020
Merged

CMA-ES sampler #93

merged 31 commits into from
Mar 18, 2020

Conversation

c-bata
Copy link
Owner

@c-bata c-bata commented Mar 15, 2020

N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016.
https://arxiv.org/abs/1604.00772

@c-bata

This comment has been minimized.

@c-bata c-bata changed the title CMA-ES sampler 2 CMA-ES sampler Mar 15, 2020
@c-bata
Copy link
Owner Author

c-bata commented Mar 15, 2020

Can't encode by gob because all field is private. I avoid to store cma optimizer in the storage because it's easy to share optimizer across goroutine workers in Go.

package cma

import (
	"bytes"
	"encoding/gob"
	"errors"
	"fmt"
	"math"
	"math/rand"
	"sort"
	"strconv"

	"github.com/c-bata/goptuna"
	"gonum.org/v1/gonum/floats"
	"gonum.org/v1/gonum/mat"
)

var _ goptuna.RelativeSampler = &Sampler{}

// Sampler returns the next search points by using CMA-ES.
type Sampler struct {
	x0             map[string]float64
	sigma0         float64
	rng            *rand.Rand
	nStartUpTrials int
}

func (s *Sampler) SampleRelative(
	study *goptuna.Study,
	trial goptuna.FrozenTrial,
	searchSpace map[string]interface{},
) (map[string]float64, error) {
	if searchSpace == nil || len(searchSpace) == 0 {
		return nil, nil
	}

	searchSpace = normalizeSearchSpace(searchSpace)
	if len(searchSpace) == 1 {
		// CMA-ES does not support two or more dimensional continuous search space.
		return nil, goptuna.ErrUnsupportedSearchSpace
	}
	orderedKeys := make([]string, 0, len(searchSpace))
	for name := range searchSpace {
		orderedKeys = append(orderedKeys, name)
	}
	sort.Strings(orderedKeys)

	trials, err := study.GetTrials()
	if err != nil {
		return nil, err
	}
	completed := make([]goptuna.FrozenTrial, 0, len(trials))
	for i := range trials {
		if trials[i].State == goptuna.TrialStateComplete {
			completed = append(completed, trials[i])
		}
	}
	if len(completed) < s.nStartUpTrials {
		return nil, nil
	}

	optimizer, err := s.restoreOrInitOptimizer(searchSpace, completed, orderedKeys)
	if err != nil {
		return nil, err
	}

	if optimizer.dim != len(orderedKeys) {
		// TODO(c-bata): Use logger for warning.
		fmt.Println("This optimizer does not support dynamic search space.")
		return nil, nil
	}

	solutions := make([]*Solution, 0, optimizer.PopulationSize())
	for i := range completed {
		gstr, ok := completed[i].SystemAttrs["goptuna:cma:generation"]
		if !ok {
			continue
		}
		if g, err := strconv.Atoi(gstr); err != nil || g != optimizer.Generation() {
			continue
		}
		x := mat.NewVecDense(len(orderedKeys), nil)
		for i := 0; i < len(orderedKeys); i++ {
			p, ok := completed[i].InternalParams[orderedKeys[i]]
			if !ok {
				return nil, errors.New("invalid internal params")
			}
			x.SetVec(i, p)
		}
		solutions = append(solutions, &Solution{
			X:     x,
			Value: completed[i].Value,
		})

		if len(solutions) == optimizer.PopulationSize() {
			break
		}
	}

	if len(solutions) == optimizer.PopulationSize() {
		err = optimizer.Tell(solutions)
		if err != nil {
			return nil, err
		}

		buf := bytes.NewBuffer(nil)
		err = gob.NewEncoder(buf).Encode(optimizer)
		if err != nil {
			return nil, err
		}

		err = study.Storage.SetTrialSystemAttr(trial.ID, "goptuna:cma:optimizer", buf.String())
		if err != nil {
			return nil, err
		}
	}

	optimizer.rng = rand.New(rand.NewSource(s.rng.Int63() - int64(trial.Number)))
	nextParams, err := optimizer.Ask()
	if err != nil {
		return nil, err
	}

	err = study.Storage.SetTrialSystemAttr(trial.ID,
		"goptuna:cma:generation", strconv.Itoa(optimizer.Generation()))
	if err != nil {
		return nil, err
	}

	params := make(map[string]float64, len(orderedKeys))
	for i := range orderedKeys {
		params[orderedKeys[i]] = nextParams.AtVec(i)
	}
	return params, nil
}

func (s *Sampler) restoreOrInitOptimizer(
	searchSpace map[string]interface{},
	completeTrials []goptuna.FrozenTrial,
	orderedKeys []string,
) (*Optimizer, error) {
	var optimizer Optimizer
	for i := len(completeTrials) - 1; i >= 0; i-- {
		optimizerStr, ok := completeTrials[i].SystemAttrs["goptuna:cma:optimizer"]
		if !ok {
			continue
		}

		decoder := gob.NewDecoder(bytes.NewBufferString(optimizerStr))
		err := decoder.Decode(&optimizer)
		if err != nil {
			return nil, err
		}
	}

	x0, sigma0, err := initialParam(searchSpace)
	if err != nil {
		return nil, err
	}
	if s.x0 != nil {
		x0 = s.x0
	}
	if s.sigma0 > 0 {
		sigma0 = s.sigma0
	}

	mean := make([]float64, len(orderedKeys))
	for i := range orderedKeys {
		mean0, ok := x0[orderedKeys[i]]
		if !ok {
			return nil, errors.New("keys and search_space do not match")
		}
		mean[i] = mean0
	}
	bounds := getSearchSpaceBounds(searchSpace, orderedKeys)
	return NewOptimizer(
		mean, sigma0,
		OptimizerOptionBounds(bounds),
		OptimizerOptionSeed(s.rng.Int63()),
	)
}

// NewSampler returns the TPE sampler.
func NewSampler(opts ...SamplerOption) *Sampler {
	sampler := &Sampler{
		rng:            rand.New(rand.NewSource(0)),
		nStartUpTrials: 0,
	}

	for _, opt := range opts {
		opt(sampler)
	}
	return sampler
}

func normalizeSearchSpace(searchSpace map[string]interface{}) map[string]interface{} {
	normalized := make(map[string]interface{}, len(searchSpace))
	for name := range searchSpace {
		switch searchSpace[name].(type) {
		case goptuna.UniformDistribution:
			normalized[name] = searchSpace[name]
		case goptuna.DiscreteUniformDistribution:
			normalized[name] = searchSpace[name]
		case goptuna.LogUniformDistribution:
			normalized[name] = searchSpace[name]
		case goptuna.IntUniformDistribution:
			normalized[name] = searchSpace[name]
		}
	}
	return normalized
}

func initialParam(searchSpace map[string]interface{}) (map[string]float64, float64, error) {
	x0 := make(map[string]float64, len(searchSpace))
	sigma0 := make([]float64, 0, len(searchSpace))
	for name := range searchSpace {
		switch d := searchSpace[name].(type) {
		case goptuna.UniformDistribution:
			x0[name] = (d.High + d.Low) / 2
			sigma0 = append(sigma0, math.Abs(d.High-d.Low)/6)
		case goptuna.DiscreteUniformDistribution:
			x0[name] = (d.High + d.Low) / 2
			sigma0 = append(sigma0, math.Abs(d.High-d.Low)/6)
		case goptuna.LogUniformDistribution:
			x0[name] = (d.High + d.Low) / 2
			sigma0 = append(sigma0, math.Abs(d.High-d.Low)/6)
		case goptuna.IntUniformDistribution:
			x0[name] = float64(d.High+d.Low) / 2
			sigma0 = append(sigma0, math.Abs(float64(d.High-d.Low))/6)
		default:
			return nil, 0, goptuna.ErrUnknownDistribution
		}
	}
	return x0, floats.Min(sigma0), nil
}

func getSearchSpaceBounds(
	searchSpace map[string]interface{},
	orderedKeys []string,
) *mat.Dense {
	bounds := mat.NewDense(len(orderedKeys), 2, nil)
	for i, name := range orderedKeys {
		switch d := searchSpace[name].(type) {
		case goptuna.UniformDistribution:
			bounds.Set(i, 0, d.Low)
			bounds.Set(i, 1, d.High)
		case goptuna.DiscreteUniformDistribution:
			bounds.Set(i, 0, d.Low)
			bounds.Set(i, 1, d.High)
		case goptuna.LogUniformDistribution:
			bounds.Set(i, 0, d.Low)
			bounds.Set(i, 1, d.High)
		case goptuna.IntUniformDistribution:
			bounds.Set(i, 0, float64(d.Low))
			bounds.Set(i, 1, float64(d.High))
		default:
			panic("keys and search_space do not match")
		}
	}
	return bounds
}

@github-actions

This comment has been minimized.

@github-actions

This comment has been minimized.

@github-actions

This comment has been minimized.

@c-bata
Copy link
Owner Author

c-bata commented Mar 18, 2020

The reason why the benchmark results are bad is just kurobako-go don't support RelativeSampler now. I'll merge this after passed tests.

@c-bata c-bata merged commit 1fae5db into master Mar 18, 2020
@c-bata c-bata deleted the cmaes branch March 18, 2020 15:09
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant