Description
Reminder
- I have read the above rules and searched the existing issues.
System Info
I am doing long context full SFT, I can enable finetuning by setting:
bf16: true
gradient_checkpointing: true
disable_gradient_checkpointing: false
gradient_checkpointing: true
disable_gradient_checkpointing: false
enable_liger_kernel: true
use_unsloth_gc: true
flash_attn: fa2
torch_empty_cache_steps: 10
but I found that OOM happened during the validation stage, I have already set the batch size == 1
# eval
val_size: 0.02
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 24
I have to set up validation during SFT due to the specific task I am fine-tuning.
Are there any ways or suggestions to solve this validation OOM problem?
Thanks in advance!
Reproduction
model
model_name_or_path:
method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json
dataset
dataset:
template: qwen
cutoff_len: 120000
overwrite_cache: true
preprocessing_num_workers: 90
output
output_dir:
report_to: tensorboard
logging_dir:
logging_steps: 1
save_steps: 190
plot_loss: true
overwrite_output_dir: true
train
per_device_train_batch_size: 1
gradient_accumulation_steps: 4
learning_rate: 1.0e-6
num_train_epochs: 2.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
max_grad_norm: 1.0
bf16: true
gradient_checkpointing: true
disable_gradient_checkpointing: false
enable_liger_kernel: true
use_unsloth_gc: true
flash_attn: fa2
torch_empty_cache_steps: 10
ddp_timeout: 180000000
save_only_model: true
eval
val_size: 0.02
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 24
Others
No response
Activity