Skip to content

mybigday/llama.rn

Repository files navigation

llama.rn

Actions Status License: MIT npm

React Native binding of llama.cpp.

llama.cpp: Inference of LLaMA model in pure C/C++

Installation

npm install llama.rn

iOS

Please re-run npx pod-install again.

By default, llama.rn will use pre-built rnllama.xcframework for iOS. If you want to build from source, please set RNLLAMA_BUILD_FROM_SOURCE to 1 in your Podfile.

Android

Add proguard rule if it's enabled in project (android/app/proguard-rules.pro):

# llama.rn
-keep class com.rnllama.** { *; }

By default, llama.rn will use pre-built libraries for Android. If you want to build from source, please set rnllamaBuildFromSource to true in android/gradle.properties.

Obtain the model

You can search HuggingFace for available models (Keyword: GGUF).

For get a GGUF model or quantize manually, see Prepare and Quantize section in llama.cpp.

Usage

Load model info only:

import { loadLlamaModelInfo } from 'llama.rn'

const modelPath = 'file://<path to gguf model>'
console.log('Model Info:', await loadLlamaModelInfo(modelPath))

Initialize a Llama context & do completion:

import { initLlama } from 'llama.rn'

// Initial a Llama context with the model (may take a while)
const context = await initLlama({
  model: modelPath,
  use_mlock: true,
  n_ctx: 2048,
  n_gpu_layers: 99, // number of layers to store in VRAM (Currently only for iOS)
  // embedding: true, // use embedding
})

const stopWords = ['</s>', '<|end|>', '<|eot_id|>', '<|end_of_text|>', '<|im_end|>', '<|EOT|>', '<|END_OF_TURN_TOKEN|>', '<|end_of_turn|>', '<|endoftext|>']

// Do chat completion
const msgResult = await context.completion(
  {
    messages: [
      {
        role: 'system',
        content: 'This is a conversation between user and assistant, a friendly chatbot.',
      },
      {
        role: 'user',
        content: 'Hello!',
      },
    ],
    n_predict: 100,
    stop: stopWords,
    // ...other params
  },
  (data) => {
    // This is a partial completion callback
    const { token } = data
  },
)
console.log('Result:', msgResult.text)
console.log('Timings:', msgResult.timings)

// Or do text completion
const textResult = await context.completion(
  {
    prompt: 'This is a conversation between user and llama, a friendly chatbot. respond in simple markdown.\n\nUser: Hello!\nLlama:',
    n_predict: 100,
    stop: [...stopWords, 'Llama:', 'User:'],
    // ...other params
  },
  (data) => {
    // This is a partial completion callback
    const { token } = data
  },
)
console.log('Result:', textResult.text)
console.log('Timings:', textResult.timings)

The binding’s deisgn inspired by server.cpp example in llama.cpp, so you can map its API to LlamaContext:

  • /completion and /chat/completions: context.completion(params, partialCompletionCallback)
  • /tokenize: context.tokenize(content)
  • /detokenize: context.detokenize(tokens)
  • /embedding: context.embedding(content)
  • Other methods
    • context.loadSession(path)
    • context.saveSession(path)
    • context.stopCompletion()
    • context.release()

Please visit the Documentation for more details.

You can also visit the example to see how to use it.

Tool Calling

llama.rn has universal tool call support by using minja (as Jinja template parser) and chat.cpp in llama.cpp.

Example:

import { initLlama } from 'llama.rn'

const context = await initLlama({
  // ...params
})

const { text, tool_calls } = await context.completion({
  // ...params
  jinja: true, // Enable Jinja template parser
  tool_choice: 'auto',
  tools: [
    {
      type: 'function',
      function: {
        name: 'ipython',
        description:
          'Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.',
        parameters: {
          type: 'object',
          properties: {
            code: {
              type: 'string',
              description: 'The code to run in the ipython interpreter.',
            },
          },
          required: ['code'],
        },
      },
    },
  ],
  messages: [
    {
      role: 'system',
      content: 'You are a helpful assistant that can answer questions and help with tasks.',
    },
    {
      role: 'user',
      content: 'Test',
    },
  ],
})
console.log('Result:', text)
// If tool_calls is not empty, it means the model has called the tool
if (tool_calls) console.log('Tool Calls:', tool_calls)

You can check chat.cpp for models has native tool calling support, or it will fallback to GENERIC type tool call.

The generic tool call will be always JSON object as output, the output will be like {"response": "..."} when it not decided to use tool call.

Grammar Sampling

GBNF (GGML BNF) is a format for defining formal grammars to constrain model outputs in llama.cpp. For example, you can use it to force the model to generate valid JSON, or speak only in emojis.

You can see GBNF Guide for more details.

llama.rn provided a built-in function to convert JSON Schema to GBNF:

Example gbnf grammar:

root   ::= object
value  ::= object | array | string | number | ("true" | "false" | "null") ws

object ::=
  "{" ws (
            string ":" ws value
    ("," ws string ":" ws value)*
  )? "}" ws

array  ::=
  "[" ws (
            value
    ("," ws value)*
  )? "]" ws

string ::=
  "\"" (
    [^"\\\x7F\x00-\x1F] |
    "\\" (["\\bfnrt] | "u" [0-9a-fA-F]{4}) # escapes
  )* "\"" ws

number ::= ("-"? ([0-9] | [1-9] [0-9]{0,15})) ("." [0-9]+)? ([eE] [-+]? [0-9] [1-9]{0,15})? ws

# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= | " " | "\n" [ \t]{0,20}
import { initLlama } from 'llama.rn'

const gbnf = '...'

const context = await initLlama({
  // ...params
  grammar: gbnf,
})

const { text } = await context.completion({
  // ...params
  messages: [
    {
      role: 'system',
      content: 'You are a helpful assistant that can answer questions and help with tasks.',
    },
    {
      role: 'user',
      content: 'Test',
    },
  ],
})
console.log('Result:', text)

Also, this is how json_schema works in response_format during completion, it converts the json_schema to gbnf grammar.

Mock llama.rn

We have provided a mock version of llama.rn for testing purpose you can use on Jest:

jest.mock('llama.rn', () => require('llama.rn/jest/mock'))

NOTE

iOS:

  • The Extended Virtual Addressing capability is recommended to enable on iOS project.
  • Metal:
    • We have tested to know some devices is not able to use Metal (GPU) due to llama.cpp used SIMD-scoped operation, you can check if your device is supported in Metal feature set tables, Apple7 GPU will be the minimum requirement.
    • It's also not supported in iOS simulator due to this limitation, we used constant buffers more than 14.

Android:

  • Currently only supported arm64-v8a / x86_64 platform, this means you can't initialize a context on another platforms. The 64-bit platform are recommended because it can allocate more memory for the model.
  • No integrated any GPU backend yet.

Contributing

See the contributing guide to learn how to contribute to the repository and the development workflow.

Apps using llama.rn

  • BRICKS: Our product for building interactive signage in simple way. We provide LLM functions as Generator LLM/Assistant.
  • ChatterUI: Simple frontend for LLMs built in react-native.
  • PocketPal AI: An app that brings language models directly to your phone.

Node.js binding

  • llama.node: An another Node.js binding of llama.cpp but made API same as llama.rn.

License

MIT


Made with create-react-native-library


Built and maintained by BRICKS.