Releases: sviperm/neuro-comma
Releases · sviperm/neuro-comma
Repunt new model + quantization
Zip archive contains params.json with training params (we need this for configure our model's network), weights (*.pt) and logs.
Just extract this archive in models/ directory.
Expected directory structure after extraction:
models
└── repunct-model-new
├── logs
│ └── repunct-model-new_logs.txt
├── params.json
└── weights
├── weights_ep6_9912.pt
└── _quantized_weights_ep5_9912.pt
Model evaluation metrics
Best validation Acc: 9912204619275377
Confusion Matrix:
[22035741 102978 4773]
[ 107477 2112209 2878]
[ 7320 1558 1478818]
O:
Precision: 0.9948
Recall: 0.9951
F1 score: 0.995
COMMA:
Precision: 0.9528
Recall: 0.9503
F1 score: 0.9516
PERIOD:
Precision: 0.9949
Recall: 0.994
F1 score: 0.9944
COMMA + PERIOD:
Precision: 0.9697
Recall: 0.9679
F1 score: 0.9688
Repunt model
This model works only in repunct-stable
branch
Zip archive contains params.json
with training params (we need this for configure our model's network), last 2 best weights (*.pt
) and logs.
Just extract this archive in models/
directory.
Expected directory structure after extraction:
models
└── repunct-model
├── logs
│ └── repunct-model_logs.txt
├── params.json
└── weights
├── weights_ep4_9910.pt
└── weights_ep5_9911.pt
Model evaluation metrics
Best validation Acc: 0.9832204226585259
Confusion Matrix:
[21489384 144837 40369]
[ 188716 1890897 8915]
[ 33862 5237 1359430]
O:
Precision: 0.9897
Recall: 0.9915
F1 score: 0.9906
COMMA:
Precision: 0.9265
Recall: 0.9054
F1 score: 0.9158
PERIOD:
Precision: 0.965
Recall: 0.972
F1 score: 0.9685
COMMA + PERIOD:
Precision: 0.9422
Recall: 0.9321
F1 score: 0.9371