Skip to content

yjybuaa/vtinet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VTiNet for Visible-Thermal Video Object Segmentation

Dataset and Code for the paper:

Unveiling the Power of Visible-Thermal Video Object Segmentation [paper], IEEE Transactions on Circuits and Systems for Video Technology, 2023.

If you find our work useful for your research, please consider citing the paper: @article{yang2023unveiling, title={Unveiling the Power of Visible-Thermal Video Object Segmentation}, author={Yang, Jinyu and Gao, Mingqi and Cong, Runmin and Wang, Chengjie and Zheng, Feng and Leonardis, Ale{\v{s}}}, journal={IEEE Transactions on Circuits and Systems for Video Technology}, year={2023}, publisher={IEEE} }

The VisT300 Dataset

Google Drive

VisT300
├── train
|   └── RGBImages
|       └── video1
|           ├── 00000.jpg
|           ├── 00005.jpg
|           ├── xxxxx.jpg
|       ...
|   └── ThermalImages
|       └── video1
|           ├── 00000.jpg
|           ├── 00005.jpg
|           ├── xxxxx.jpg
|       ...
|   └── Annotations
|       └── video1
|           ├── 00000.png
|           ├── 00005.png
|           ├── xxxxx.png
|       ...
├── test (same organization as the train set)

VTiNet

PyTorch implementation of VTiNet. We test the code in the following environments, other versions may also be compatible: Python=3.9, PyTorch=1.10.1, CUDA=11.3

  • Install
pip install -r requirements.txt
  • Train
torchrun --master_port 10010 --nproc_per_node=2 train.py --exp_id vist300 --rgbt_root [path to VisT300/train] --save_path [path to save checkpoints] --load_network [path to pretrained xmem]

pretrained xmem

  • Test
python test.py --model [path to vtinet checkpoint] --rgbt_path [path to path to VisT300/test] --save_path [path to results]

vtinet checkpoint

  • Evaluate
python eval.py -g [path to VisT300/test/Annotations] -r [path to results]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published